

Student Name: Oscar Johnson Student ID: 16025481
Project Name: Organic non-playable characters using neural networks

1

Organic Non-playable characters using
neural networks

Summary
This project uses neural networks to drive an NPC
agent that behaves realistically in an RPG setting.
Using three neural networks, one for idle behavior, one
for combat behavior and one final emotionally driven
network, this project simulates a realistic bar brawl
setting where NPCs can act on and react to in game
events.
This project includes a small framework for developing
behaviors through neural networks and training these
networks to behave as expected.

Brief Biography
I am a young and aspiring student currently studying
Games Technology (BSc).
I have always been interested in AI and wanted to use
this project as a way learn more about the current
practices used in the industry and how other methods
could be applied to better effect. I chose neural
networks as they employ machine learning, a skill I
have always been infatuated with and one that many
employers are seeking as they believe it is at the
forefront of current technology.

Figure 1. A screenshot of the Project.

Student Name: Oscar Johnson

Student Number: 16025481

Supervisor: James Huxtable

Department of Computer

Science and Creative

Technology

University of the West of England

Coldharbour Lane

Bristol, UK
Oscar2.Johnson@live.uwe.ac.uk

Student Name: Oscar Johnson Student ID: 16025481
Project Name: Organic non-playable characters using neural networks

2

How to access this project
The project can be accessed from Github at:
https://github.com/JohnnersUK/Organic-NPCs.
The accompanying video can be watched here:
https://youtu.be/nAxArUUPL_A

After downloading the project, a demo can be launched
by running CTP.exe from the /builds/ folder.

Controls: W,A,S and D move the player, Space bar
jumps, Shift runs, Left control toggles combat and E
attacks.

The network visualizer can be activated by pressing f1
and navigated using the arrow keys.

To view the code, look at the trainer and network
customizations options as well as the network visualizer
this project can be opened in Unity2018.2.2f1.

The trainer can be found in the scene hierarchy and the
agent prefab can be found in the root asset folder as
botPrefab.

The tavern assets were purchased from the unity asset
store, the robot’s model and animations were gathered
from mixamo.com and the shader for viewing the
player through walls was found on the unity3d wiki. All
sources can be found in the appendices under asset
sources.

Introduction
This project set out to solve the issue of developing
realistic NPCs that allow for greater player immersion
as well as system optimization.

Development of AI systems are often restricted as they
are less marketable than other game features such as
graphical fidelity and gameplay content, therefore they
are often lackluster and overly simplified to decrease
their overhead and impact on system performance.

This project aims to solve this issue by using neural
networks to control NPC behavior. In theory, neural
networks have a relatively low impact on performance
as once trained, evaluating the network is just a short
series of floating-point operations which modern CPUs
excel at.

Currently, behavior trees (as seen in the video game
Halo 2 (Bungie, 2004)) are one of the preferred
methods of video game AI. However, as discussed in a
blog post on Gamasutra (Rasmussen J, 2016) they are
slow to implement meaning “Game designers cannot
quickly prototype their ideas” and they are hard to
expand on as “The number of bugs and time to fix
them will grow exponentially”, resulting in lackluster AI.

Additionally, in a Comparison of the decision tree,
artificial neural network, and linear regression methods
(Kim Y S, 2008) it was found that neural networks are
consistently faster at evaluating than decision trees,
the same premise behavior trees are based on.

Therefore, the goals of this project can be summarized
as follows:

To create an AI system that acts consistently,
believably and as the player would expect. An AI
system that has a low impact on system resources as
to save overhead for other systems such as physics and
rendering. And an AI system that is easy to develop,

Student Name: Oscar Johnson Student ID: 16025481
Project Name: Organic non-playable characters using neural networks

3

that is highly customizable to the developer’s needs
and that can be prototyped rapidly.

Neural networks are not perfect either. The neural
network model can be more difficult to understand than
decision trees and as neural networks operate like black
boxes, it can be difficult to see how the network is
operating making bug fixing difficult. These were all
issues that were taken into account throughout
development.

Using neural networks, this project has achieved an AI
system that has a minimal impact on performance, is
easily integrated into rapid development cycles and
delivers an immersive experience for player.

Practice
Developing the neural network class
The network class was developed to be modular, easy
to modify and have a low overhead. As a class, this
network class can be added to any unity mono behavior
allowing for network control in any script.
A constructor was created that takes an array of
integers along with a string. Each element in the array
represents a layer with the value representing the
depth of the layer, this allows the networks to be fully
modifiable in number of inputs, number and depth of
the hidden layer and the number of outputs.
The string is used for identification so that the networks
can be sorted later.

The activation function tanh was chosen for the
network after multiple rounds of testing training
effectiveness. The research phase (Johnson, O. 2018)
discussed using a linear or sigmoid activation function

rather than a step function as it allowed for a greater
degree of control over the outputs akin to fuzzy logic.

Upon implementation it was found that after a few
rounds of training and mutation the weights became
too large, causing the delta between outputs to grow.
This made it difficult to train for different behaviors and
data sets as small weight adjustments lead to
massively differing outputs meaning more rounds of
training were required to fix errors.

More research into methods of managing weights such
as weight decay to regulate growth (Krogh A, 1992)
and alternative activation methods was required. This
was a short sight of the research phase (Johnson, O.

public NeuralNetwork(int[] layout, string n =
"Default")
{
 _layers = new int[layout.Length];
 for (int i = 0; i < _layers.Length; i++)
 {
 _layers[i] = layout[i];
 }

 // Initialize the neurons
 List<float[]> neurons = new List<float[]>();

 for (int i = 0; i < _layers.Length; i++)
 {
 neurons.Add(new float[_layers[i]]);
 }

CODE SNIPPET FROM NEURAL NETWORK INITIALIZATION

Student Name: Oscar Johnson Student ID: 16025481
Project Name: Organic non-playable characters using neural networks

4

2018) and could easily have been avoided if this topic
was covered with more scrutiny.

A paper studying the performance of different
activation functions (Karlik B, 2011) found that on
average, the tanh activation function gave better
accuracy overall than a sigmoid function. As discussed
in “Activation Functions: Comparison of Trends in
Practice and Research for Deep Learning” (Nwankpa C,
2018), Tanh skews the range of outputs between -1
and 1 which removes the delta between outputs caused
by larger weights.

After implementing Tanh, the training results showed
less errors caused by differing outputs and helped
improve the overall fitness of the networks in fewer
training rounds.

Also discussed in the research report was implementing
backpropagation for improved training results. For
function, a mutation algorithm was included for
evolving weights in-between training sessions, with the
intent of removing this and implementing back
propagation later on.

This implementation of mutation allowed for rapid
training of test behaviors at a low cost. This sped up
the development time as the turn around on prototype
builds was short

With feedback from the supervisor of this project and
the play test results, it was found that through
mutation the agents were reaching realistic enough
behavior that the use of back propagation seemed like
a waste of time which could be used to develop
additional behaviors.

Creating behavioral classes
As each behavior required its own network and
resulting functions for initializing, storing and running
through them, it made sense to create a base class for
all agent behavior scripts to inherit from. Not only did
this class help streamline the process of creating new
behaviors but it also allowed for the polymorphism used
in the training script discussed later in this report.

The final project contains three network driven scripts,
they can be broken down as follows:

Activation
Function:

Average fitness after 5
training rounds:

Linear 652

Sigmoid 899

Tanh 1355

DIAGRAM OF SYSTEMS DRIVING AGENT BEHAVIOR

TRAINING DATA BEFORE AND AFTER

IMPLEMENTING TANH

Student Name: Oscar Johnson Student ID: 16025481
Project Name: Organic non-playable characters using neural networks

5

The agent controller script acts as a top-level class
containing a master network. This network chooses
what behaviors to run based off results from the two
other networks as well as the agents list of emotions.
This integration of the emotion system allows the
network to drive the agent’s actions off their emotions
much like humans tend too, in an attempt to create
more realistic actions.
Currently the emotional system contains three
emotions: happiness, anger and fear which all play an
important role in how the agent makes decisions. The
research report details the use of a more complex
emotional system of the likes of Robert Plutchiks
emotional wheel (2001) however, this was cut back as
the amount of behaviors currently implemented
removed the need for such a complex system. Further
development of more behaviors would require more
emotions and therefore with more development time a
more complex emotional system would be more
successful.

The needs network drives the agent’s idle behavior, as
chosen by the master network. The network evaluates
their current needs (such as hunger, boredom, etc.)
and a prioritized list of actions is created.

Initially, the network would only choose one action to
complete and would then wait until that action was
completed to choose another. As highlighted by the
supervisors during the mid-progress demo, this caused
issues with expandability as if the agents couldn’t
complete this action, say there was nowhere free to
eat, they couldn’t complete the task and would stand
idle until they could. This was a major hurdle in the
development of this project as the system needed to be
flexible if it ever were to be implemented into an actual

game. To resolve this issue, instead of evaluating the
best result from the network, each output was given a
priority based off the value of each node. A simple
function was made to check if the most prioritized
action was available, If it was it would be added to the
agents queue of actions, if not then the next most
important action would be evaluated. This queue could
be interrupted by manually inserting actions of a higher
priority at the front to allow flexibility for other
behaviors, much like how system interruptions work on
modern computers. This queue also allows for greater
optimization as unlike other networks, this network
isn’t constantly feeding through inputs if the queue isn’t
empty, saving system resources.

The final network controls the agents combat. This
network is the simplest due to the need for rapid
reactions in a combat scenario, it takes a list of agent’s
stats including health and stamina and decides whether
they need to attack, dodge or wait for stamina to
recover.

Training the networks
To train networks, a script was developed that allows
the developer to select the behavior they wish to train
using an enum and polymorphic behavior, how long to
train for and how fast to simulate game time. At the
end of each training round the results are then
evaluated, with the best fitted network being serialized
and saved as a binary file.

The project ran into major issues training the needs
controller as the expected values were more abstract,
bots were expected to fulfill their needs but the order
and importance placed on each need was largely up to
the network. This caused a large delay in the

Student Name: Oscar Johnson Student ID: 16025481
Project Name: Organic non-playable characters using neural networks

6

development of the project as a heap of development
time was spent simply figuring out how to train each
network.

Lots of different methods for adding fitness were
explored such as job completion rate, average of
needs, most active etc. but eventually it was found that
by calculating a weighted happiness function, where
hunger was awarded points based off a sine wave, and
then adding that to the networks fitness the training
results showed lower error rates.

This was later mitigated by the inclusion of an intensive
training option where the developer can spawn a near
infinite amount of networks to be trained in parallel,
however it doesn’t account for how difficult it is to see
where errors lie in a network even with the inclusion of
the network visualizer.

In retrospect, developing a more fleshed out training
script before attempting to train networks would have
saved a considerable amount of time and further time

should have been allocated developing a better method
of visualizing networks.

Developing additional behaviors
A small portion of development time was spent
developing additional behaviors to help improve player
immersion whilst playing.

An event system was added using a web of events and
delegates controlled by an event manager. This
manager alerts bots when certain actions have taken
place near them such as a fight or death.

A faction system was then layered on top of this system
to control how each bot responds. There are 3 factions,
neutral, guards and barbarians and as expected guards
will attempt to keep peace in the tavern, barbarians will
be more sensitive to and more likely to cause violence
and neutral will be more likely to observe from a
distance or run away.

Factions also dictate what interactable a bot may use,
this allows the developer to assign different jobs and
hobbies to different factions.

Evaluation of user feedback
Throughout the development of this project, 5 play test
sessions were carried out with the same participants to
help gauge user immersion and guide further
development.

Overall these playtests were unsuccessful due to the
small sample size, as the participants needed to remain
the same, and as participants were more eager to focus
on smaller details irrelevant to the project, rather than
focus on NPC behavior.

Student Name: Oscar Johnson Student ID: 16025481
Project Name: Organic non-playable characters using neural networks

7

Each playtest saw a measurable increase in player
immersion as key milestones in development were hit
such as adding player interaction, adding bot on player
interactions etc. however each round came with a new
series of bug fixes, minor tweaks and suggestions that,
overall distracted the development from the NPCs.

If anything, this playtest helps to demonstrate how
player immersion can’t be solved by developing one
robust system but comes from how the many complex
systems in a game interact with each other. Players
tended to be more forgiving towards unrealistic NPC
behavior yet stated all immersion was lost when bugs
or other annoyances got in the way such as character
controls or hitbox issues that reminded them that what
they were experiencing was just some game.

Discussion of outcomes
This project proves that neural networks are a viable
option for developing functional video game NPCs at a
low system cost. Whilst the current implementation of
the agents lacks polish and additional behaviors, all the
core behaviors are present. The bots can react to
player actions adequately and can also behave
realistically whilst idle.

Tested on 2 systems, a desktop pc and a mid-tier
gaming laptop; With 10 agents in a unity scene the
networks take up a fraction of the system resources,
which were mostly allocated to the physics and
rendering segments.

With 500 training nodes all running through the
networks once a frame the script time was low enough,
6.2ms on the desktop, to push framerates over 100fps.
These framerates are well over the standard 30 to

60fps perused by current video game developers and
leave plenty of headroom for other game systems.

The framework allows for a streamlined process of
developing networked behaviors quickly. New behaviors
can be created by inheriting from the AiBehavior.css
base class, the network can be customized completely
to the developers needs from the unity inspector and
from there the outputs can be evaluated and relevant
actions can be coded.

Beginning to train new behaviors is just as easy,
provided the developer implements a robust strategy
for applying fitness. Once a new behavior is made it
can be added to the enumerator of trainable scripts and
after the developer has coded a method of evaluating
the network it can be trained for a customizable length
with any number of agents.

Once trained these behaviors can be introduced to the
system by adding them as an output to the master
network and then training the master network how to

FRAME TIME FOR 10 AGENTS WITH 3 BEHAVIOR SCRIPTS

Student Name: Oscar Johnson Student ID: 16025481
Project Name: Organic non-playable characters using neural networks

8

use these new behaviors. This allows developers to
easily add and remove behaviors without impacting the
rest of the system where as if one big network was
used it would be impossible to do so without causing
major problems.

Splitting up the neural network into separate networks
and controlling them with one master network proved
more effective with training and debugging as well. If a
behavior needed more training it could be done without
the complexity of training a deep network and if the
agents started to show errors it was easier to isolate
where the error was happening.

Given more development time, it would be better if this
project featured its own API that supported scripting,
via CSScript, instead of relying on the unity inspector
and a good understanding of c#. This would allow a
custom build to be shipped to designers that is more
light weight than unity and allows for behavior creation
in a more controlled environment through a more user-
friendly language. This was out of the projects scope
however, and the framework implemented is a step in
the right direction towards accessible neural networks.

The network visualizer is helpful for understanding how
the networks are working and can be used to help
identify where errors are happening in evaluation.
However, without a robust understanding of the
network to begin with it can still be difficult to figure
out what is causing the error and how to fix it. Even
with the network visualizer, adjusting the networks size
and fitness is still carried out by trial and error which is
a problem this project was unable to solve.

Training the networks is still a major hurdle. Whilst the
scripts provided can get close to the desired behavior
there was still some erroneous behavior that couldn’t
be solved. This can cause problems with staging events
as well as immersion as in very few occasions the
networks can still act in unpredictable ways.

The video game Halo 2 (Bungie, 2004) has been
praised largely for its AI and in a report by Robert
Valdes on how Halo 2’s AI works, Chris Butcher is
quoted saying “What you want is an AI that is
consistent” and “We try to go for predictable actions
but unpredictable consequences”.

This error, coupled with the extended development
time this project had to undergo, could be a couple of
reasons why video game developers have stayed away
from neural networks in the past.

Conclusion and recommendations
In its present condition, the system is fully functional
within the original scope. However, more time with this
project to develop additional behaviors would allow the
agents to act in a wider variety of ways. This would
help both with gameplay and immersion.

Developing better training practices is highly
recommended, such as the introduction of
backpropagation and weight decay, as this would be
beneficial to the system and overall development flow.
Narrowing the error to as little as possible is a crucial
step towards getting consistent behavior and doing so
with the techniques implemented here would be to time
consuming.

Student Name: Oscar Johnson Student ID: 16025481
Project Name: Organic non-playable characters using neural networks

9

The use of one network controlling multiple other
networks worked well and should be investigated
further within different applications as it allowed finer
control over the network as a whole.

Neural networks have proven themselves to be a
resource effective model for video game AI and should
be a serious consideration for developers looking for an
alternative to behavior trees and finite state machines.
With the growing interest in deep learning amongst
developers, this could be an opportune time for such
developments as they can deliver good results.

References
Bungie. (2004). Halo 2. [Video Game] Microsoft
Corporation. Available:
http://halo.bungie.net/projects/halo2/ Accessed:
06/04/19.

Johnson, O. (2018). Organic Non-Playable Characters
using neural networks: research report. Unpublished,
University of the west of England.

Kim, Y.S. (2008). Comparison of the decision tree,
artificial neural network, and linear regression methods
based on the number and types of independent
variables and sample size. Expert Systems with
Applications, 34(2), pp.1227-1234.

Krogh, A. and Hertz, J.A. (1992). A simple weight
decay can improve generalization. In Advances in
neural information processing systems (pp. 950-957).

Nwankpa, C E. Ijomah, W. Gachagan, A. Marshal, S.
(2018). Activation Functions: Comparison of Trends in
Practice and Research for Deep Learning. arXiv.org.

arXiv:1811.03378. Available:
https://arxiv.org/abs/1811.03378 Accessed: 06/04/19

Rasmussen, J. (2016) Are behavior trees a thing of the
past? [Online] Gamasutra. Available:
http://www.gamasutra.com/blogs/JakobRasmussen/20
160427/271188/Are_Behavior_Trees_a_Thing_of_the_
Past.php. Accessed: 07/04/19

Plutchik, R. (2001). The nature of emotions: Human
emotions have deep evolutionary roots, a fact that may
explain their complexity and provide tools for clinical
practice. American scientist, 89(4), pp.344-350.

Valdes, R. (2004). The Artificial intelligence of Halo 2.
[online] HowStuffWorks.com. Available:
https://electronics.howstuffworks.com/halo2-ai.htm
Accessed: 06/04/19

Vehbi O, A. Karlik, B. (2011). Performance Analysis of
Various Activation Functions in Generalized MLP
Architectures of Neural Networks. International Journal
of Artificial Intelligence And Expert Systems. 1. 111-
122. Available:
https://www.researchgate.net/publication/228813985_
Performance_Analysis_of_Various_Activation_Functions
_in_Generalized_MLP_Architectures_of_Neural_Network
s Accessed: 06/04/19

Appendixes
Asset sources

The assets for the agent and their animations can be
found at https://www.mixamo.com/#/ and are free
for use.

Student Name: Oscar Johnson Student ID: 16025481
Project Name: Organic non-playable characters using neural networks

10

The assets for the tavern can be found at
https://assetstore.unity.com/packages/3d/environment
s/fantasy/simpoly-tavern-120464 and were purchased
by the author of this project.

The script for the character shader can be found on the
unity wiki here:
http://wiki.unity3d.com/index.php/Silhouette-
Outlined_Diffuse

Log Sheet
The log sheet can be found accompanying this
document, or inside the github repository

Questionnaire results
The questionnaire results spreadsheet can be found
accompanying this document, or inside of the github
repo.

